Optim line search
Tip
This example is also available as a Jupyter notebook: optim_linesearch.ipynb
This example shows how to use LineSearches
with Optim. We solve the Rosenbrock problem with two different line search algorithms.
First, run Newton
with the default line search algorithm:
using Optim, LineSearches
import OptimTestProblems.MultivariateProblems
UP = MultivariateProblems.UnconstrainedProblems
prob = UP.examples["Rosenbrock"]
algo_hz = Newton(linesearch = HagerZhang())
res_hz = Optim.optimize(prob.f, prob.g!, prob.h!, prob.initial_x, method=algo_hz)
* Status: success
* Candidate solution
Minimizer: [1.00e+00, 1.00e+00]
Minimum: 1.109336e-29
* Found with
Algorithm: Newton's Method
Initial Point: [-1.20e+00, 1.00e+00]
* Convergence measures
|x - x'| = 1.13e-08 ≰ 0.0e+00
|x - x'|/|x'| = 1.13e-08 ≰ 0.0e+00
|f(x) - f(x')| = 7.05e-16 ≰ 0.0e+00
|f(x) - f(x')|/|f(x')| = 6.35e+13 ≰ 0.0e+00
|g(x)| = 6.66e-15 ≤ 1.0e-08
* Work counters
Seconds run: 0 (vs limit Inf)
Iterations: 23
f(x) calls: 71
∇f(x) calls: 71
∇²f(x) calls: 23
Now we can try Newton
with the cubic backtracking line search, which reduced the number of objective and gradient calls.
algo_bt3 = Newton(linesearch = BackTracking(order=3))
res_bt3 = Optim.optimize(prob.f, prob.g!, prob.h!, prob.initial_x, method=algo_bt3)
* Status: success
* Candidate solution
Minimizer: [1.00e+00, 1.00e+00]
Minimum: 1.232595e-30
* Found with
Algorithm: Newton's Method
Initial Point: [-1.20e+00, 1.00e+00]
* Convergence measures
|x - x'| = 1.76e-09 ≰ 0.0e+00
|x - x'|/|x'| = 1.76e-09 ≰ 0.0e+00
|f(x) - f(x')| = 1.13e-17 ≰ 0.0e+00
|f(x) - f(x')|/|f(x')| = 9.14e+12 ≰ 0.0e+00
|g(x)| = 4.44e-14 ≤ 1.0e-08
* Work counters
Seconds run: 0 (vs limit Inf)
Iterations: 25
f(x) calls: 34
∇f(x) calls: 26
∇²f(x) calls: 25
This page was generated using Literate.jl.