Getting Started
First, import the package.
julia> using LsqFitDefine a two-parameter exponential decay model, where $t$ is a one-element independent variable, $p_1$ and $p_2$ are parameters.
The model function is:
\[m(t, \boldsymbol{p}) = p_1 \exp(-p_2 t)\]
julia> # t: array of independent variable
julia> # p: array of model parameters
julia> model(t, p) = p[1] * exp.(-p[2] * t)For illustration purpose, we generate some fake data.
julia> # tdata: data of independent variable
julia> # ydata: data of dependent variable
julia> tdata = range(0, stop=10, length=20)
julia> ydata = model(tdata, [1.0 2.0]) + 0.01*randn(length(tdata))Before fitting the data, we also need a initial value of parameters for curve_fit().
julia> p0 = [0.5, 0.5]Run curve_fit() to fit the data and get the estimated parameters.
julia> fit = curve_fit(model, tdata, ydata, p0)
julia> param = fit.param
2-element Array{Float64,1}:
 1.01105
 2.0735LsqFit.jl also provides functions to examinep0 = [0.5, 0.5] the goodness of fit. vcov(fit) computes the estimated covariance matrix.
julia> cov = vcov(fit)
2×2 Array{Float64,2}:
 0.000116545  0.000174633
 0.000174633  0.00258261stderror(fit) returns the standard error of each parameter.
julia> se = stderror(fit)
2-element Array{Float64,1}:
 0.0107956
 0.0508193To get the confidence interval at 10% significance level, run confint(fit; level=0.9), which essentially computes the estimate parameter value ± (standard error * critical value from t-distribution).
julia> confidence_interval = confint(fit; level=0.9)
2-element Array{Tuple{Float64,Float64},1}:
 (0.992333, 1.02977)
 (1.98537, 2.16162)For more details of LsqFit.jl, check Tutorial and API References section.